$49.99
Availability: 0 left in stock

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has...

  • Name : Foundations of Deep Reinforcement Learning: Theory and Practice in Python
  • Vendor : Addison-Wesley Professional
  • Type : Books
  • Manufacturing : 2024 / 08 / 01
  • Barcode : 9780135172384

Click here to be notified by email when this product becomes available.

Categories:

Guaranteed safe checkout:

apple paygoogle paymasterpaypalshopify payvisa
Foundations of Deep Reinforcement Learning: Theory and Practice in Python
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work.
This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.
  • Understand each key aspect of a deep RL problem
  • Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)
  • Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)
  • Understand how algorithms can be parallelized synchronously and asynchronously
  • Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work
  • Explore algorithm benchmark results with tuned hyperparameters
  • Understand how deep RL environments are designed
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.


Author: Laura Graesser, Wah Loon Keng
Binding Type: Paperback
Publisher: Addison-Wesley Professional
Published: 12/05/2019
Series: Addison-Wesley Data & Analytics
Pages: 416
Weight: 1.1lbs
Size: 9.00h x 6.90w x 0.50d
ISBN: 9780135172384

About the Author
Laura Graesser is a research software engineer working in robotics at Google. She holds a master's degree in computer science from New York University, where she specialized in machine learning.

Wah Loon Keng is an AI engineer at Machine Zone, where he applies deep reinforcement learning to industrial problems. He has a background in both theoretical physics and computer science.

Ezra's Archive Does not ship outside of the United States

Delivery Options:

1. Economy: 

Estimated Delivery Time - 5 to 8 Business Days

Shipping Cost - $4.15

2. USPS Priority:

Estimated Delivery Time - 1 to 3 Business Days 

Shipping Cost - $8.85

3. Free Economy Shipping: Only Applicable to Orders over $60

Returns and Refunds: 

Purchased items are not eligible to be returned. However, a refund or item replacement may be granted should an item be damaged or misplaced during shipping. To make a refund or replacement claim please contact us via email at Ezra'sArchive@outlook.com