Recent advances in polymer science have made it possible to relate quantitatively molecular structure to rheological behavior. At the same time, new methods of synthesis and characterization allow the preparation and structural verification of samples having a range of branched polymeric structures. This book unites this knowledge to enable production of polymers with prescribed processability and end-product properties. Methods of polymer synthesis and characterization are described, starting from fundamentals. The foundations of linear viscoelasticity are introduced, and then the linear behavior of entangled polymers is described in detail. This is followed by a discussion of the molecular modeling of linear behavior. Tube models for both linear and branched polymers are presented. The final two chapters deal with nonlinear rheological behavior and tube models to describe nonlinearity. In this second edition, each chapter has been significantly rewritten to account for recent advances in experimental methods and theoretical modeling. It includes new and updated material on developments in polymer synthesis and characterization, computational algorithms for linear and nonlinear rheology prediction, measurement of nonlinear viscoelasticity, entanglement detection algorithms in molecular dynamics, nonlinear constitutive equations, and instabilities.
Author: John M. Dealy, Daniel J. Read, Ronald D. Larson
Binding Type: Hardcover
Publisher: Hanser Publications
Published: 01/05/2018
Pages: 610
Weight: 2.7lbs
Size: 9.75h x 6.88w x 1.38d
ISBN: 9781569906118
2nd Revised Edition
About the Author
Dealy, John M.: - John Dealy is Professor Emeritus of Chemical Engineering at McGill University, Canada. He has developed novel new methods for measuring nonlinear viscoelasticity and wall slip of molten polymers and elastomers and is the author or coauthor of four books on polymer rheology.Read, Daniel J.: - Daniel Read is a Reader in the School of Mathematics at the University of Leeds, UK. His research includes development of models to predict rheology of entangled molten polymers, and of models to predict molecular structure from reactor kinetics. He is coauthor of the "BoB" code for entangled polymer rheology prediction.Larson, Ronald D.: - Ronald Larson is Professor of Chemical Engineering at the University of Michigan. His research interests include rheology and flow of complex fluids, molecular simulations of such materials, and polyelectrolyte interactions.
Ezra's Archive Does not ship outside of the United States
Delivery Options:
1. Economy:
Estimated Delivery Time - 5 to 8 Business Days
Shipping Cost - $4.15
2. USPS Priority:
Estimated Delivery Time - 1 to 3 Business Days
Shipping Cost - $8.85
3. Free Economy Shipping: Only Applicable to Orders over $60
Returns and Refunds:
Purchased items are not eligible to be returned. However, a refund or item replacement may be granted should an item be damaged or misplaced during shipping. To make a refund or replacement claim please contact us via email at Ezra'sArchive@outlook.com