$69.99
Availability: 210 left in stock

Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions.

Poor data across businesses and the U.S. government are reported to cost trillions of...

  • Name : Data Cleaning
  • Vendor : ACM Books
  • Type : Books
  • Manufacturing : 2024 / 08 / 16
  • Barcode : 9781450371537
Categories:

Guaranteed safe checkout:

apple paygoogle paymasterpaypalshopify payvisa
Data Cleaning
- +

Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions.

Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems.

This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, we give an overview of the end-to-end data cleaning process, describing various error detection and repair methods, and attempt to anchor these proposals with multiple taxonomies and views. Specifically, we cover four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, we include a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models.

This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.



Author: Ihab F. Ilyas, Xu Chu
Binding Type: Paperback
Publisher: ACM Books
Published: 06/18/2019
Pages: 282
Weight: 1.08lbs
Size: 9.25h x 7.50w x 0.59d
ISBN: 9781450371537

About the Author
Ilyas, Ihab F.: - Ihab F. Ilyas is a professor in the Cheriton School of Computer Science and the NSERC-Thomson Reuters Research Chair on data quality at the University ofWaterloo. His main research focuses on the areas of big data and database systems, with special interest in data quality and integration, managing uncertain data, rank-aware query processing, and information extraction. Ihab is also a co-founder of Tamr, a startup focusing on largescale data integration and cleaning. He is a recipient of the Ontario Early Researcher Award (2009), a Cheriton Faculty Fellowship (2013), an NSERC Discovery Accelerator Award (2014), and a Google Faculty Award (2014), and he is an ACM Distinguished Scientist. Ihab is an elected member of the VLDB Endowment board of trustees, elected SIGMOD vice chair, and an associate editor of the ACM Transactions of Database Systems (TODS). He holds a Ph.D. in Computer Science from Purdue University, West Lafayette.Chu, Xu: - Xu Chu is a tenure-track assistant professor in the School of Computer Science at Georgia Institute of Technology. He obtained his Ph.D. from the University of Waterloo in 2017. His research interests resolve around two themes: using data management technologies to make machine learning more usable, and using machine learning to tackle hard data management problems such as data integration. He won the Microsoft Research Ph.D. Fellowship in 2015. He also received the Cheriton Fellowship from the University of Waterloo, 2013-2015.

Ezra's Archive Does not ship outside of the United States

Delivery Options:

1. Economy: 

Estimated Delivery Time - 5 to 8 Business Days

Shipping Cost - $4.15

2. USPS Priority:

Estimated Delivery Time - 1 to 3 Business Days 

Shipping Cost - $8.85

3. Free Economy Shipping: Only Applicable to Orders over $60

Returns and Refunds: 

Purchased items are not eligible to be returned. However, a refund or item replacement may be granted should an item be damaged or misplaced during shipping. To make a refund or replacement claim please contact us via email at Ezra'sArchive@outlook.com