This book focuses on the behavior of large random matrices. Standard results are covered, and the presentation emphasizes elementary operator theory and differential equations, so as to be accessible to graduate students and other non-experts. The introductory chapters review material on Lie groups and probability measures in a style suitable for applications in random matrix theory. Later chapters use modern convexity theory to establish subtle results about the convergence of eigenvalue distributions as the size of the matrices increases. Random matrices are viewed as geometrical objects with large dimension. The book analyzes the concentration of measure phenomenon, which describes how measures behave on geometrical objects with large dimension. To prove such results for random matrices, the book develops the modern theory of optimal transportation and proves the associated functional inequalities involving entropy and information. These include the logarithmic Sobolev inequality, which measures how fast some physical systems converge to equilibrium.
Author: Gordon Blower
Binding Type: Paperback
Publisher: Cambridge University Press
Published: 11/09/2009
Series: London Mathematical Society Lecture Note #367
Pages: 448
Weight: 1.4lbs
Size: 8.80h x 5.90w x 0.90d
ISBN: 9780521133128
About the Author
Blower, Gordon: - Gordon Blower is currently Head of the Department of Mathematics and Statistics at Lancaster University, and Professor of Mathematical Analysis.
Ezra's Archive Does not ship outside of the United States
Delivery Options:
1. Economy:
Estimated Delivery Time - 5 to 8 Business Days
Shipping Cost - $4.15
2. USPS Priority:
Estimated Delivery Time - 1 to 3 Business Days
Shipping Cost - $8.85
3. Free Economy Shipping: Only Applicable to Orders over $60
Returns and Refunds:
Purchased items are not eligible to be returned. However, a refund or item replacement may be granted should an item be damaged or misplaced during shipping. To make a refund or replacement claim please contact us via email at Ezra'sArchive@outlook.com